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Abstract

Inthispaper we present new uncalibrated control schemesfor vision-
guided robotic tracking of a moving target using a moving camera.
These control methods are applied to an uncalibrated robotic system
with eye-in-hand visual feedback. Wthout a priori knowledge of the
robot’s kinematic model or camera calibration, the system is able
to track a moving object through a variety of motions and main-
tain the object’s image features in a desired position in the image
plane. These control schemes estimate the system Jacobian as well
aschangesin target features dueto target motion. Four novel strate-
giesare simulated and a variety of parameters are investigated with
respect to performance. Smulation results suggest that a Gauss—
Newton method utilizing a partitioned Broyden's method for model
estimation provides the best steady-state tracking behavior.

Uncalibrated
Eye-in-Hand
Visual Servoing

a model-dependent system also demands calibration of the
robot and vision system, or recalibration due to the sensitivity
of the system to disturbances. These activities can be both
difficult and time-consuming, or perhaps unfeasible in an un-
structured or changing environment. To our knowledge, this
is the first method that addresses the uncalibrated eye-in-hand
visual servoing problem for a moving target.

2. Background

Benefits of using eye-in-hand camera arrangements include
improved target recognition and inspection resulting from lo-
calization described by Chaumette, Rives, and Espiau (1991).
Jang and Bien (1991) contend that effective resolution is in-
creased, the problem of occlusion is solved, and an image

KEY WORDS—uncalibrated eye-in-hand visual servoingpearly free of parallax error can be obtained using an eye-in-

nonlinear least squares, Jacobian estimation

1. Introduction

hand camera. Static cameras can be limited in their abilities
due to limited depth of field and spatial resolution, problems

which can be relieved by using eye-in-hand cameras as indi-
cated by Papanikolopoulos, Khosla, and Kanade (1993).

In this paper we develop a model-independent, vision-guided,
rqbotic control method. The controller pre;ented is a recub 1 \yse of Eye-In-Hand Camera
sive Gauss—Newton method and uses nonlinear least-squares
optimization. The combined camera/robot model is approX-he majority of eye-in-hand visual servoing controllers fall
imated in a dynamic Jacobian estimation strategy, allowingnder two categories which could limit their use. Either they
servo control to be applied to systems without requiring are not model-independent with regards to either the camera
robot kinematic model or a calibrated camera model. Errar the robot, or they require that the target is static.
velocity estimation is done simultaneously with Jacobian es- Hashimoto and Noritsugu (1999) developed a linearized
timation in a partitioned matrix method. The control methodbserver to estimate target velocity in their model-dependent
is completely independent of the type of robot, the type afontroller. Allotta and Colombo (1999) also use linear ap-
camera, and number of cameras. proximations in an affine camera—object interaction model
Much work has been done in developing visual servoingith the robot kinematic model assumed known. Baeten and
systems for robot control resulting in a variety of approachd3e Schutter (1999) use an eye-in-hand feedforward controller
to the servoing problem. The majority of the resulting methin conjunction with force control for planar contour follow-
ods, however, require a priori knowledge of the systemincludhg. Both a camera model and a robot model are required in
ing the kinematic structure and the camera parameters. Usis case.
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Algorithms using a Pl controller or a pole assignment con-
troller, both in combination with a steady-state Kalman filter,
are implemented by Papanikolopoulos, Khosla, and Kanade
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(1993). In each method, control output is fed to a Cartesiaiontrol for tracking a moving target. A recursive least-squares

positioning system which requires a kinematic model. (RLS) algorithm is implemented for Jacobian estimation to
Yoshimi and Allen (1994) implement the geometric effecprovide a robust control method even in the presence of sys-

of rotational invariance to approximate the image Jacobian. tam and measurement noise. The controller does not, however,

addition to requiring knowledge of the robot Jacobian, thepermit the application of a moving camera. This paper extends

algorithm inherently works for only a static target. the controller developed for the fixed camera case to solve the
Crétual, Chaumette, and Bouthemy (1991) develop a comoving camera problem.

trol algorithm for tracking a moving target with no model of

the image transformation. The robot’s vision system, however,

consists of a camera with only two degrees of freedom (DoF3;2. Uncalibrated Control for Fixed Camera Visual

pan and tilt, which are controlled by an image error minimizaServoing

tion. Depthis not considered in the process, as trackingisonly ,, . . ,
P P 9 rw this section we present the fixed camera case for reference.

done in the image plane, not in Cartesian space. : o i . .
Flandin, Chaumette, and Marchand (2000) build upon t’_Ln Section 3 it is modified for the moving camera case. First

work done by Crétual, Chaumette, and Bouthemy (1991) ge dynamic Qauss—l\llewton.controller is presented followed
create avisual servo controller for a 6-DoF robot. In this cas y the dynamic Jacobian estimator.
the global positioning is done by a static, global camera, and
the rotational positionipg is servoed. by another, indepen'deﬂtz_l' Dynamic Gauss-Newton Method
controller. These algorithms do require knowledge of the kine-
matic robot Jacobian. The dynamic Gauss—Newton method minimizes a time-
Oh and Allen (2001) present real-time experiments tracksarying objective function based on errors in the image plane.
ing people and robot hands (moving targets) using a 3-Ddfthe desired behavior is simple target following, the error
gantry robot with a 2-DoF pan-tilt unit. The approach parfunction in the image plane for a moving target at position
titions the axes based on dynamic performance to servo thie(r) and an end-effector at position(9) is the residual
camera. The controller uses the kinematic and dynamic a&rror
tributes of each DoF to increase tracking performance.
Corke and Hutchinson (2001) develop a decoupled image- fO,0)=y®) —y @) (1)
based controller to handle pathological image-based visual

servoing problems for the eye-in-hand case. They also empl@¥iereq represents the joint angles angpresents time. The

a potential field technique to prevent features from leaving thfbjective function to be minimized is the squared error:
image plane. The tasks studied involve static targets.

Malis and Chaumette (2002) and Malis (2002) discuss a 1
task-function approach to image-based model-free visual ser- FO,1 = EfT(G, Hfe,1). (2
voing. This work uses information from a eye-in-hand camera
to servo the robot into a desired orientation with respect to@bjective function (2) can be minimized using the dynamic
static target. In Malis (2002) the controller is able to achievgauss—Newton algorithm (Piepmeier, McMurray, and Lipkin
straight-line Cartesian motion of the robot-mounted camergggga). Let, represent thith approximation to the Jacobian
It is important to note that the reference to “model-free” vi% = J,. The dynamic Gauss—Newton method computes the
sual servoing in these works refers to the fact that there jsint angles iteratively to minimize the objective function (2)
no known model of the target object and the camera models
are uncalibrated. The method is robust with respect to camera Lo Afy
calibration errors, but a well-calibrated robot is used. Orr = Ok — (Jk Jk) Je (it Ehf) (3)
Several methods have been developed using a rank one
update estimation of a composite Jacobian, known as a Brayhereh, = t, — ¢,_, is the time increment. The terr%i}h,
den estimator. The Jacobian estimate is employed as parfgédicts the change in the error function for the next itera-
a Gauss—Newton method to minimize squared error in thn. This term is a critical addition to the work presented
image plane. The Broyden estimator develops an on-line esiy jagersand, Fuentes, and Nelson (1997) and Hosada and
mate of the system model, relating changes in image featurgSada (1994) that enables the robot to servo to and track tar-
to changes in joint variables. This means that no kinematifet motion. Note that eq. (3) is the controller used to compute
or camera model is used. Knowledge or estimation of inddesired changes in joint angles. It is assumed that individual
vidual kinematic and camera parameters are not necessg#ht level controllers are used to effect the changes.
Piepmeier (1999) builds on work carried out by Jagersand, A dynamic RLS estimation is used to provide on-line esti-

Fuentes, and Nelson (1997) and Hosada and Asada (1994dtes of the Jacobian as discussed in Piepmeier, McMur-
to develop a dynamic Gauss—Newton method of visual serygy, and Lipkin (1999b) and as follows.
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2.2.2. Dynamic Jacobian Estimation; Recursive is zero at the (k- 1)th data point. Note that by minimizing a
Least-Squares weighted sum of the changes in the affine error models, the
. . Igorithm will generally not satisfy the secant condition as in
Sm_ce th_e robot model_ Is assumed to be unknc_an, a RLS %’royden’s method (Dennis and Schnabel 1983). Hosoda and
gonthr_n Is used t.o _es_'ur_nate the_ system Jacobian. This is %Ksada (1994) and Hosoda, lgarashi, and Asada (1998) imple-
cr:)mpflg_shed bg n|1|nf|mh|zmg a vyelgrtltgd sum Olf the chre]ang?fs hent a RLS Jacobian estimation scheme similar to Broyden’s

the affine model of t € error in t.e Image plane. The a "Nfethod with addition of a forgetting factor. In Piepmeier, Mc-
modet gf the error functiony (9’.” 'S denoted as:(6, 1) and Murray, and Lipkin (1999b) it has been shown that this method
expansion about theth data point gives isaRLStechnique, atype of Kalman filter. The RLS algorithm
. Afy displays greater stability than Broyden’s method for Jacobian
m0, 1) = f O, o) + SO = ) + = (1 — ). (4)  estimation by considering data over a period of time instead
of just the previous iteration.

As shown in Haykin (1991) an exponentially weighted RLS = The Jacobian estimation in eq. (7) requires the (partial)
algorithm that minimizes a weighted sum of the changes igelocity error term’, which can be directly estimated from
the affine model over time can be used to recursively estimaige target image feature vector when a static camera is used

the system Jacobian. with, for example, first-order differencing:
k—1

, . 0fx Ay (0) — y* (1)) Ve = Vi

_ k—i—1 ) 2 A B S A >~ | 2t .
ming, = I;A | Amy || (5) ot < ot L h,

Amy = my (6, t) —m; (6, 1) (6)  However, in the moving camera case the image target features

. Afe t—1) | = Jih are a function ob and¢, y* = y* (6, t). This makes a similar
T e T K direct calculation of the time partial derivative of error unfea-

sible. This is resolved using the partitioned recursive Jacobian
where estimation scheme in the following section.
h = O —6) . . .
3. Uncalibrated Control for Eye-in-Hand Visual
and where the weighting factoris® A < 1 and the unknown Servoing
variables are the elements @f. The problem is solved in

Appendix A to yield With an eye-in-hand system, changes in image features of

a target object may be due either to target motion or robot

A A of; motion. In this section we develop a nonlinear least-squares
Jo = Jat (Af = Je-aho — Eh) optimization method for a time-varying, coupled system and
we introduce:

(A + h]P_1hy) " h) P 4 @
1 ; . 1. a partitioned Broyden’s update for the (partial) error
P = < (Pk—l — Pioahy (A+hiPisho) " hy Pk—l) (8) velocity estimation;
whereh, = 6, — 6,_1, Af = f. — f._.. Equations (7) and 2. recursive and non-recursive forms of a Gauss-Newton
(8) define the recursive update fdr. At each iteration, the method implementing the partitioned Broyden update;

calculation ofJ, using egs. (7) and (8) solves the minimiza-
tion of eq. (5). The Jacobian estimate is used in the dynamic
Gauss—Newton method of Section 2.2.1 to determine the joint
anglesy; that track the target. The parametecan be tuned  The partitioned Broyden update implements a simultane-
to average in more or less of the previous data in the mingus dynamic RLS estimation of the Jacobian and the error
mization. The approximatiog; is often used to estimate the velocity. The error velocity estimation corrector is based on
effective number of terms being minimized.)Aclose to 1  the total time derivative of the error function. Various con-
results in a filter with a longer memory. trollers are created in the following section by combining the
Equation (7) bears some similarity to Broyden’s methoglvo Gauss—Newton forms with the error velocity correction.
of Jacobian estimation as employed by Jagersand, Fuentes,
and Nelson (1997). Broyden’s method (Dennis and Schnal®ll. A Partitioned Broyden's Method
1983) is a Jacobian estimation scheme that satisfies the seegf gynamic Broyden’s method presented in Piepmeier, Mc-
condition, i.e. the change in the,_, andm, affine models Myrray, and Lipkin (1999a) requires that the target's image

1. An affine model is a linear model that does not necessarily pass throuBQSiti_ony* b_e independent O_f robotjoint positiéngn_d onlya
the origin. function of time. In the moving camera case, this is no longer

3. a correction scheme for the error velocity estimation
using the partitioned Broyden result as a predictor.
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valid, becausey* = y* (6,1). In successive iterations, the The term(f,) is the estimated/predicted value of the error
. " S
targe§ Image position may chapge due t(.) camera moyem?\r/]éiocity Y This partitioned Broyden’s method uses RLS to
even if the actual target is stationary. This makes estimation. .~ 7 . .
. minimize a weighted sum of the squared differences between
of the error velocity necessary.

L . . the current and previous affine models for each iteration of
The estimation of the error velocity can be incorporate . .
0, 1) = (6;_1, ;_1) to determine new Jacobian and error ve-

into a Broyden Jacobian estimation method using a partitioned

matrix to rewrite eq. (6) as ocity approximations. Varying the parametdsetween 0 and

1 changes the memory of the scheme, with values closer to 1

Amgio1y = [fi = fioa — Jehran 9) resulting in longer memory, implying that a greater number of
o . B previous Jacobian and error velocity values have a significant
where effect on the new values.
o= [0 %]
P [ 6, — 6:_1) 3.2. Recursive Gauss-Newton Method
k(i—1)
(e — ti1)

In order to provide afiltering action to the joint change calcula-
so the Jacobian is augmented by the error velocity and tHen, the Gauss—Newton method is extended to an RLS formu-
joint angle differences are augmented by a time differenck&tion with exponential weighting. In this case the weighted
Noting the similarity of egs. (6) and (9), the RLS solution fosum being minimized uses the affine error models evaluated

the minimization of¢, in eq. (5) is given by at the next data point
e (o7 000) () s k
Jk == Jk*l + Af - Jk—lh A + h Pkflh h Pkfl l . .
1 . ming, = Z Y Imy O, i) I (12)
Po= i (P Bk (e PRE) iTR) ) y
m; Orsas tiyr) = fi + Ji(Oria — 6;) + 8_; (tier— 1) (13)
where of
== i _l 1 - ti Ji 9 - 9,‘
ﬁ_l:(ek_gk—l)} |:f+8t(k+l )+ Ji (6 )]
(O = fi-a) — (=) O — 6 (14)

While egs. (7) and (8) are inherently similar to eqgs. (10)
and (11), it is important to note the difference betwelen Which must be solved fa#, ,; given.,. This can be rewrit-
used in eq. (7) and the partitiongd used in eq. (10) which tenas
incorporates botk, and% to be used by the controller. An
algorithm for the combination of the partitioned Broyden up- ming, = mine"We
date with the (non-recursive) Gauss—Newton controller given e=b— Ax,

by eq. (3) in Section 2.2.1 is as follows:

Algorithm 1: Gauss—Newton Controller with Partitionedywhere
Broyden's Method (NGN)

Giyenf :R* — R™; 0o, 6, € R"; Jy € R™; T 1m0 Bpra, tis) y°r
mx1. n+1xn+1.
(‘](;)OIRe ,P0€R+ +’)\‘€(O’l) e = 5 ) W = ". )
Dofor k=1,2, ... Ry ey Yy
Af = fi = ficts ho =0 — O, hy = 1 — s _ . N
- 6, — 61) Jo+ %O (frzr — t0) + Jo (B — 6b)
= )
(te — 1) b = :
Joa = [ Ji-1 (ft>k—1 ] L fi+ % (e — 8) + Ji 6 — 60
~ ~ -~ o~ .-~ N1 .
Jo=J .+ (A f— Jk,lh> (A + hTPk,lh) WTB . - _j
~ ~ ~ o~ ~ ~ 1. — . _ _ _
P = % (Pk—l — P 1h (A + hTPk—lh) hTPk—l) A = :A o X = Orer = 6) = hy.
L —Jk

NN 2 al [ A
9k+1 =0, — (JkTJk) (Jkak + ]kT <f.t>l\ht)
End for The RLS solution for the minimization @, in eq. (12) is
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fixed. Introducing the approximatioﬁ’a? = Af/h,, the total
change in error, angf ¥ = (Jh,) / h,, the change in the error

a_

O = 200 — 01— Oy 1 J] (yl + 1 0 s AkT) - due to end-effector motion, then for thth increment
o i (7). = (ar = dins) /n, (16)
<fk + o (g1 — ) + e (B — 9k1))
where(ﬁ) is the estimated value ¢f), . Using the above
k
0, = l (Q“ — 0 JT (yl 4 ijHfT>’l ij“) _equation, an approximation of the error velocity values can
14 ¢ ¢ be made for comparison with those values given by the parti-

- . . . t
Combining this recursive Gauss—Newton method with th
partitioned Broyden's method and using the predicted val

of the error velocity gives the following algorithm:

Algorithm 2: Recursive Gauss—Newton Method (RGN)

Given f : R" — R™; 6, 6, € R"; J, € R™";

(ﬁ) c Rmxl; P, € Rn+lxr1+l; Qo € R Yok € (0, 1)
0

Dofor k=1,2, ...

Af =fi— fict, hg =6 — 01, hy =1 — tia
P[0
(te — ti1)

jk—l = [ jk—l (fr) :I
k=1 )
.ik == j;(_l + (Af - jk—li/;) <)\, + };Tﬁk_lﬁ) hTPk_l

~ ~ o~ P N
B =1 <Pk1 — Pish (3 + TP i) hTPkl)

[0 (7), )=

N N A\ 1
s =26 = 61— Qo] (v1 + 10 1Y)

ioned Broyden estimator. Thus, a Gauss—Newton controller

) or the recursive Gauss—Newton controller (15) can either
%plement the uncorrected error velocity values output by the
partitioned Broyden’s method or the corrected error velocity
values given by the total time derivative equation. In other
words, eg. (16) can be inserted in either Algorithm 1 or 2 af-
ter the Jacobian estimation. It should be noted that all four
control options compute desired changes in joint angles, and
it is assumed that the robot’s individual joint level controllers
are able to achieve the desired changes.

4. Simulation and Results

In this section we present a series of simulations to evaluate
the control schemes. First, the four controllers are compared
for a simple translational, circular path for varying speeds
andi. Then with a selected controller more difficult paths are
examined.

4.1. System Description

A 6-DoF system is simulated using the Robotics and Machine

(it (£) =) +d6.—00)

A A A\t A
O = % (le — Quad] (}/I + Ji QkfleT) Ji le)
End for

Vision Toolboxes developed by Corke (1996) for use in the
MATLAB environment. The camera is assumed to be coinci-
dent with the final frame of the Puma 560 manipulator. The
dynamics of the robot are not considered in this simulation. A
Again, there is amemory termin the formulatign similarin - sampling time of:, = 50 ms is used throughout for a 20 Hz
function toi, which can be tuned to vary the effect of previousystem update. While vision latencies are not explicitly mod-
information. eled, itis assumed that the vision data at each update represent
the changes in features for the most recently commanded mo-
tion.

- . The target consists of four planar feature points spaced
The partitioned Broyden’s method uses RLS estimation {g, 3 square with 5 cm sides. The target's initial location is
smult?_neously approximate the Jacobjaand the error ve- ithin the camera’s field of view and is approximately 50 cm
locity a_ff because for the moving camera case they cannot pefront of the camera. The image features seen at this point
determined separately. The averaging process of this meth@dsine the target image. As the target moves, the error will be
however, may not produce accurate error velocity values. ThGnimized as the robot servos the camera so that the camera
estimated Jacobian can also be used in a corrector to calculgtg| ine target maintain constant relative positions. To start
new values of the error velocity through use of the total timg, o simulation, the robot is moved away from the target. To

derivative: estimate the initial Jacobian, each joint is successively moved
a small amount and the change in image features is recorded.

After capturing the target image and initializing the Jaco-
bian, the simulation is ready to begin. The target center is
The term% represents the change in error due to the tagiven a circular motion with constant orientation in the fixed
get motion since the end-effector position is instantaneoudisame

3.3. Estimated Error Velocity Correction

df _af

af do
dr ot

96 dt
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teresting that the NGN/CV simulations perform similarly to
. NGN/UV simulations when the image noise level is reduced
(x,y,2) = (65,50 + 10sin(kwh,) , 10 costkwh,))  (17)  py half, indicating that it is very sensitive to system noise.
This shows the beneficial filtering action of the recursive (un-
8{rected) error velocity calculation and the amplification of
oise introduced by the first order corrector.

whereh, is the sampling period; is the iteration numbe, is
the frequency, and the units are centimeters. Thus, the tar
is translating in a circular path. Uniform image noise betwee
+0.5 pixel is added to the image features of the target object.

4.3. NGN/UV Performance

4.2. Controller Performance For the 6-DoF system simulated, the NGN/UV controller

System performance depends on the speed of the target, pieduces the best results. To study the effects of the for-
type of controller used, and the memory of the controller. Thgetting factori, a second series of simulations was run us-
simulated control systems are distinct in two ways: (1) thig the NGN/UV controller and varying the circular speed
Gauss—Newton controller is non-recursive or recursive; ang and the forgetting factok. Figure 5 shows the average
(2) the error velocity is uncorrected or corrected. All schemegteady-state image error far = {0.05,0.1,0.15,0.2}, and
use the estimated Jacobian from the partitioned Broyden up-= {0.94, 0.95,0.96,0.97,0.98,0.99,1.0} for 25 simula-
date. The four controller schemes simulated here includéons each. The average steady-state image RMS error for
(NGN/UV) non-recursive Gauss—Newton controller given bgach simulation is plotted by and the mean of the averages
Algorithm 1 with uncorrected error velocity; (RGN/UV) re- is plotted as a line. Clearly a long memory with> 0.98
cursive Gauss—Newton controller given by Algorithm 2 witi{approximately 20 or more significant samples) gives the best
uncorrected error velocity; (NGN/CV) non-recursive Gausseverall performance. Figure 6 plots the mean of the average
Newton controller with corrected error velocity from Secimage error for. = {0.98,0.99,1.00} of A versus the target
tion 3.3; (RGN/CV) recursive Gauss—Newton controller wittspeed determined hy. For slower speeds, a lower value of
corrected error velocity from Section 3.3. A produces results in better tracking whereas at higher speeds
The results of a sample simulation utilizing the NGN/UVA = 0.9 andi = 1 result in better tracking. These results
controller (A = 0.98) is shown in Figure 1. The four fea- concur with similar studies performed for the fixed camera
ture points are seen initially in a configuration that does n@ase in Piepmeier (1999).
correspond to the goal positions. The feature points converge
to the gqql positions and the features remain at or near tﬁ_ql_ Additional Target Motions
goal positions even though the target object is moving in a
circular path in the world coordinate frame. For a referenc@p further validate the capabilities of the NGN controller
if a static camera located at the initial position the movindpr uncalibrated eye-in-hand visual servoing, additional tar-
camera, the speed of the target object (moving at 2.5¢n sget motions are studied. The simulations in Sections 4.2 and
roughly corresponds to a feature velocity of approximatel$.3 employed a simple circular path. This type of path re-
63.5 pixel st. Figure 2 shows the initial positions of the tar-sults in constant Cartesian speeds for the target object. In this
get and the robot, and Figure 3 shows the image error. Thection two additional paths are introduced. First, we demon-
average of the four image feature tracking RMS errors is 4drate tracking a square path (Figure 7). Next we demonstrate
pixels or approximately 0.2 cm. tracking the target object as it follows a helical path (Figure 8)
To study the behavior of the four different controllers, thénvolving target rotation and translation. The target is twist-
same simulation was repeated 25 times for each controlleig and retreating from the camera. To maintain the desired
at eight different circular speeds Target velocities ranged pose between the target and the camera, the robot must move
from 0.5 to 4 cm s, or from 37 to 94 pixel st for a static the camera along the robot base frame&xis as well as fol-
camera. Each of the 25 simulations has somewhat differdotv the object’s rotation and circular motion. The square path
results due to the addition of random pixel noise. Figure demonstrates the ability of the controller to handle abrupt
shows the average image RMS error norms (in pixels) fahanges in target motion. The helical path demonstrates its
the repeated trials using all four controllers. Outliers such ability to follow targets through changing depths and fea-
those seen ab = 0.3 andw = 0.4 for the NGN/UV indi- ture rotations. The targes & 5 cm square and the corners of
cate simulations where the system lost track of the desirélae target object are the four features being tracked. For Fig-
pose and the control became unstable. The NGN/UV conre 7, the four target features are moving at 3.2 chand
troller shows a distinct advantage over the other controllerfar Figure 8 the four target points reach maximum speeds of
The velocity correction scheme does not appear to offer aig.9, 1.2, 2.9, 4.0) cm s . Figures 9 and 10 show the image
advantage. In fact, the RGN/CV errors are somewhat woreatures for these two paths. Extension 1 shows animations
than the RGN/UV errors, and the NGN/CV simulations exef the robotic system as it tracks the moving target. While
hibit complete loss of control. Although not shown, it is in-the paths are very different in nature, the results are nearly
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Fig. 1. Image features for eye-in-hand visual servoing using an NGN/UV controllenwiti.98 andw = 0.25 rad st. A
moving object with four features is seen initially on the right. These features converge on the desired pose with an average
steady-state image RMS error of 4.0 pixels.
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Fig. 2. Plot showing the respective positions of the target and the robot.
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Fig. 3. Image error for using an NGN/UV controller with= 0.98 andw = 0.25 rad s'. The average steady-state RMS
error is 4.0 pixels.
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Fig. 4. A comparison of four different controllers at a range of target speeds. In general, the NGN/UV controller provides the
best convergent control.
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Fig. 5. A comparison of NGN/UV controller performance showing image error verdos four different target speeds.
Individual errors are plotted for 25 simulations; the line indicates the average error.
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Fig. 6. The performance of the NGN/UV controller foe= {0.98,0.99, 1.0} is shown for eight different target speeds dictated
by w.
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X (m)

Y (m)

Fig. 7. Path taken by the 5 cm square target object. The object maintains a canstaitton at 0.65 m while translating in
the y—z plane. The initial target position is denoted by the lightest square. The darkest represents the final position.

X (m)

Y (m)

Fig. 8. Path taken by the 5 cm square target object. The object is located initially at a depth of 0.65 m aleagithéd he
object rotates as the depth increases to 0.75 m.
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Fig. 9. Image features as seen by the eye-in-hand camera following a target object moving along the path shown in Figure 7.
Average steady-state error is 4.1 pixels. The features appear stationary because the robot maintains the desired pose relative
to the moving target.
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Fig. 10. Image features as seen by the eye-in-hand camera following a target object moving along the path shown in Figure 8.

Average steady-state error is 6.0 pixels. The features appear stationary because the robot maintains the desired pose relative
to the moving target. Note the consistency between Figures 1, 9, and 10 despite the differing target motions.
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identical to each other and to the results from Figures 1-3. Je—fo— % (fr — o)
The average steady-state tracking error for the square path _ [ by :

is 4.1 pixels, and the average steady-state tracking error for b = by } =
the helical path is 6.0 pixels. The tracking errors are shown
in Figures 11 and 12. We see from Figures 9 and 11 that the
NGN/UV controller can handle abrupt changes in the direc- C (),
tion of the target's motion. From Figures 10 and 12 we see that _ g
the NGN/UV controller can handle complex paths varyingin *¢ = R ’
depth with respect to the image plane. L (D).

Jo— fiia — % (e — ti2)
Je— fiea— %" (e — ti-1)

diagh),
5. Conclusion i [ A ] B :

In thi . . : , L diagh],_,

n this paper we have investigated the use of eye-in-hand vi- e
sual feedback for the tracking of moving targets. The methods diagh;gy, |
presented are uncalibrated and require no kinematic models or Y A
camera calibration. Thus, the same controller can be used on
a wide variety of platforms. Simulation results suggest that w =
a Gauss—Newton method utilizing a partitioned Broyden’s M
method for model estimation provides the best steady-state L A°1
tracking behavior. This work is the first presentation of an
uncalibrated, eye-in-hand, vision-based control scheme foRAd Wherel is the identity matrix(.j), denotes theth col-
moving target. While the eye-in-hand system has been studieahn of T and (diagh],) means each element of a diagonal
here, the algorithmis generic, and is applicable when the camatrix contains the row vectdr;,. An overbar indicates a
erais moving but not fixed to the robotic system. Furthermorsfacked and/or blocked quantity so, for example, the stacked
the control strategy could be applied to either a manipulatyectore is partitioned intok — 1 stacked vectors i@, and
or mobile robot for uncalibrated control. one vectore,; the matrix W hask blocks on the diagonal.
Note, however, that, merely stacks the columns aff into
; . ot . a single stacked column.

Appendlx A: Derivation of RL S Jacobian The minimization problemis now in the standard form used

Estimator for a recursive solution (see, for example, Franklin, Powell,
and Workman 1990)

The recursive dynamic Jacobian estimator is the RLS solution

to the minimization problem (5) which is repeated here %=X+ K (b — Ayxi 1) (18)
k=1 = . .
ming, = Z’\Hfl | Am | whereK; is defined as
i=0 Ps P, -
Amy =m0, 1) —m; 6, 1) Ki=—=A (Ak — AL+ 1) (19)

fk -
= i — — (e — 1) | — Jihy _
[ﬁ S (k ) Ty P, is defined by the recursion
whereh,; = (6, — 6;), 0 < A < lis the weighting factor, and
J; is the estimated Jacobian to be determined.

Itis direct to confirm that the problem can be re-expressed
in a stacked and partitioned form and the initial values, and P, must be supplied. However,

P, also has a non-recursive definition that is useful for deter-

_ 1 _ _
P, = x(] - KkAk)Pk—l (20)

mine'We mining its symmetric structure:
e=b— A%, W0 -1
where P=|A" Lo A
Amio 0 e A0
: = [ €1 } - : ’ Since A, ; is a stacking of block diagonal matrices, after
Ck Ao some rearranging?, reduces to a block diagonal matrix with

Amyg_) repeated elements
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Fig. 11. Image feature tracking error using the NGN/UV contralle= 0.98) for a target object following the square path.
Average steady-state RMS error is 4.1 pixels. The tracking is stable despite abrupt changes in the target’s motion.
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Fig. 12. Image feature tracking error using the NGN/UV controfle= 0.98) following a target object moving along a
helical path. Average steady-state RMS error is 6.0 pixels. The similarity to Figures 3 and 11 demonstrates the consistency of
the tracking behavior despite the different target motions.
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Py
where the non-recursive form &% is

-1
hio et 0 Kl

Pk:

=

0 T
hk(k—l) A k(k—1)

A similar form applies toP,_, which is used to also reduce
K, to a block diagonal matrix with repeated elements

K, 0
K= : :
0 K,
where
P P -
k-1 k=1
Ky, = 5 hig-1) <h;<r(kl)Thk(kl) + 1>

Appendix B: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video This file providesan anima-
tion of an eye-in-hand robotic
system as it tracks a square
target moving along a square
path. The left window shows
the robot and target motion.
The right window shows the
camera view as the robot s ser-
voing. The blue polygon rep-
resents the desired view of the
target, and the red polygon rep-
resents where the target is ac-
tually seen. The target appears
as a polygon (and not a square)
because the optical axis of the
camera is not perpendicular to
the surface of the target object.
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